

Journal of Fluorine Chemistry 120 (2003) 1-11

www.elsevier.com/locate/jfluchem

Review

MgF₂ as a non-conventional catalyst support

Maria Wojciechowska*, Michał Zieliński, Mariusz Pietrowski

Faculty of Chemistry, Adam Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznan, Poland Received 6 February 2002; received in revised form 28 October 2002; accepted 2 November 2002

Abstract

This review reports progress in the study of the surface structure of MgF_2 and its use as a support of catalytically active phases. Magnesium fluoride was applied first as a support in catalysis for systems containing individual oxides of transition metals (Mo, V, W, Cu, Cr) and then two different oxide phases (Cu-Cr, Cu-Mn), a metal phase (Ru, Pd) or heteropolyacids. Its use as a support enabled determination of the structure and surface properties of these catalysts. The MgF_2 -supported catalysts are characterized by high activity and selectivity in such processes as: hydrodechlorination of chlorofluorocarbons (CFCs), hydrodesulfurization of organic compounds and purification of fuel combustion products from nitrogen oxides. Magnesium fluoride has been also used in MgF_2 -doped chromium or aluminum fluoride catalysts for Cl/F exchange on hydrochlorocarbons.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Magnesium fluoride; Surface complexes; Supported metal oxides; Ruthenium catalysts; Heteropolyacids; Hydrodesulfurization; DeNO_x; CFCs hydrodechlorination; Fluoride active phases

1. Introduction

A subject of major interest in heterogeneous catalysis has been systems containing an active phase supported on the surface of oxides such as Al₂O₃, SiO₂, TiO₂, ZrO₂ and MgO. Among compounds other than oxides used as supports, fluorides have received much attention. From this group of compounds fluorinated alumina [1], metal fluorides [2–10] and mixed fluoride catalysts, for example, MgF₂/LiF [11], CrF₃/MgF₂ or CrF₃/MgF₂-AlF₃ [12–14], AlF_{3-x}(OH)_x with aluminum replaced by chromium and magnesium [15], CrF_{3-x}(OH)_x with substitution of chromium by magnesium and iron [16] have been described as heterogeneous catalysts.

This paper reviews the literature concerning characterization of magnesium fluoride and the use of MgF_2 as a catalyst support. The first work on magnesium fluoride relevant from the point of view of heterogeneous catalysis was reported by Wojciechowska et al. [17]. The results of the study led to a model of the magnesium fluoride surface and structure of the acid–base and redox centers formed on this surface [18]. The use of MgF_2 as a support resulted in a significant modification of the active phase. The mechanism of the formation of

oxide, double oxide or metallic layers on the surface of MgF₂ has been recognized and the physico-chemical properties of such systems have been determined. The data have been used for syntheses of catalysts for possible use in reactions important for environmentally friendly processes. The catalysts obtained were characterized by high activity and selectivity in the reduction of NO_x by carbon oxide [19] and hydrocarbons [20]. Magnesium fluoride proved to be a suitable support for a ruthenium catalyst effective in hydrodesulfurization [21]. Ruthenium or palladium catalysts supported on MgF2 were also found effective in hydrodechlorination of CFCs [22,23]. The subject of interest are also MgF2-doped aluminum fluorides or chromium fluorides for halogen exchange on hydrochlorocarbons and chromium fluorides supported on mixed MgF₂-AlF₃ active in the fluorination of chloroalkanes [14,24].

2. Characterization of MgF₂

Magnesium fluoride crystallizes in the rutile-type structure [25], space group $P4_2/mnm$ [26], in which each Mg^{2+} ion is surrounded by six F^- ions and each F^- ion by three Mg^{2+} ions. The cation is surrounded by a distorted octahedron made up of two fluoride ions located at a slightly longer distance than the four remaining ones: 4(Mg-F) = 1.94 Å; 2(Mg-F) = 1.99 Å.

^{*}Corresponding author. Tel.: +48-61-8699-181; fax: +48-61-8658-008. E-mail address: emawoj@main.amu.edu.pl (M. Wojciechowska).

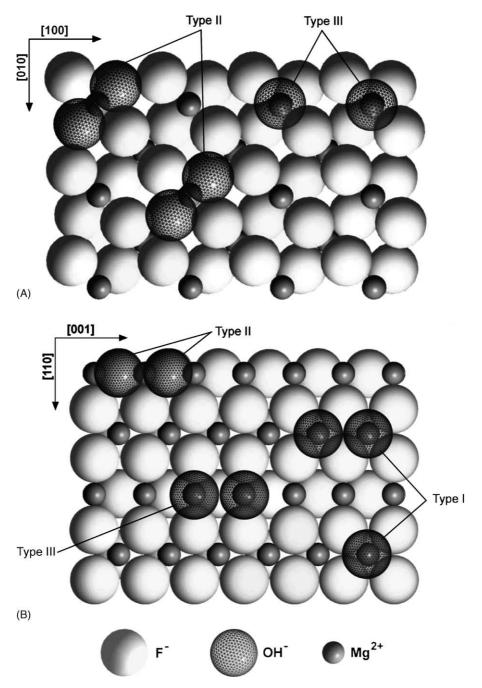


Fig. 1. The arrangement of OH groups on the surface of magnesium fluoride: (A) the (0 0 1) crystal plane; (B) the (1 1 0) crystal plane.

The model of the magnesium fluoride surface was proposed by Wojciechowska [18]. Fig. 1 shows the location of particular ions in the crystal planes (0 0 1) and (1 1 0) of MgF₂. The coordination shell of each Mg²⁺ ion located in the (1 1 0) plane, has one or two fluorine atoms missing (Mg²⁺ ions with coordination number (CN) = 5 or 4, respectively), whereas in the (0 0 1) plane, besides the coordinatively unsaturated ions (Mg_{cus})²⁺ (CN = 4), coordinatively saturated ions are also present. Electric charge of (Mg_{cus})²⁺ ions is not balanced by the surrounding negative

ions and amounts to +2/3 for Mg^{2+} ions with CN=4, and +1/3 for magnesium ions with CN=5. In the preparation of magnesium fluoride, or when it is contacted with water vapor, water dipoles interact with $(Mg_{cus})^{2+}$ ions and fill their coordination sphere leading to the formation of surface hydroxyl groups (Fig. 1). The presence of OH surface groups has been confirmed by infrared spectroscopy (IR) studies showing bands at three frequencies 3770, 3620 and $\sim 3400~cm^{-1}$ [18] corresponding to the three types (I–III) of OH groups. Descriptions of these groups are given in Table 1.

Table 1
Characterization of hydroxyl groups occurring on the surface of magnesium fluoride [18]

Lattice plane	Type of OH group	Net electric charge at OH group	CN of the surface cation over which OH group is located
(1 1 0)	(I)	-2/3	6
	(II)	-1/5	5
	(III)	-3/5	5
(0 0 1)	(II)	-1/5	5
	(III)	-3/5	5

The three types of hydroxyl groups differ in the electric charge and in geometric configuration, consequently they reveal different properties. The charges of OH groups, as calculated from a simple ionic model, are -2/3 for type I, -1/5 for type II and -3/5 for type III. The Brønsted acidity of the OH groups diminishes and their basicity increases when their electrical charges become more negative [27]. All three types of OH groups are basic. On the basis of the TPE-H₂O (temperature-programmed water elimination) and thermogravimetric studies, the OH group surface density was of the order of 3-4 nm⁻² [28], two times lower than on a typical oxide support such as Al₂O₃ (five to six OH groups/nm²) [29].

Structural investigation of MgF₂ has allowed a precise determination of diffraction parameters of polycrystalline MgF₂ [28]. Fig. 2 presents the X-ray results of magnesium fluoride calcined at 673 K (MF-4). It consists of over 40 diffraction patterns in the range $2\theta = 2{\text -}152^{\circ}$ and has been used to determine the interplanar distances, relative intensities of particular reflections and (h k l) indices for the recorded diffraction lines [28]. The data presented are more detailed than those published in American Standards for Testing Materials (ASTM) Card No. 6-0290 (1955) [30] and are the best diffraction characteristics of polycrystalline MgF₂ available so far. The presence of the three orders of

Table 2 Characterization of MgF₂ samples calcined at different temperatures [28]

Sample	Calcination temperature (K)	Surface area (m²/g)	Pore volume (cm ³ /g)	Pore diameter (Å)
MF-6	673	44.6	0.228	164
MF-7	773	22.7	0.182	291
MF-9	973	4.3	0.014	190

reflections in the XRD spectra of MgF₂ presents an opportunity to study the effect of the preparation parameters (such as calcination temperature, calcination atmosphere, and cooling procedure) on the structure of magnesium fluoride. MgF₂ calcined in the temperature range 673–1173 K shows only slight internal tension of the second type, but then the size of the crystallites considerably increases. Internal tensions of the second type determined by the history of the polycrystal, refer to the dislocations and defects in the area comparable with that of monocrystals. The lack of considerable internal tensions on thermal treatment of MgF₂ is consistent with the presence of a low number of defects [28]. Magnesium fluoride calcined at 673 K has a specific surface area of 45 m²/g and is characterized by the narrow pore size distribution in the mesoporous range with a maximum diameter of 160 Å [28] (Table 2 and Fig. 3). With increasing calcination temperature, the surface area decreases. Above 873 K, the sintering of fine pores becomes significant and the specific surface area decreases drastically (0.6 m²/g for calcination at 1073 K). Similarly, the mechanical resistance of magnesium fluoride samples improves with increasing calcination temperature [28]. Fujihara et al. [31] who studied magnesium fluoride thin films on silica glass substrates have also found the effect of the calcination temperature on the texture of MgF₂. They recorded an increase in the particle size of MgF₂ with temperature increasing from 573 to 773 K. It has been established that heat-treatment below 673 K is necessary to ensure good optical quality of MgF₂. Infrared properties of polycrystalline MgF₂ are described in [32].

The surface of magnesium fluoride hosts very weak acidbase centers. The indicator tests showed the strength of the acidic sites to be $H_0 \ge 3.3$ and basic sites $H_- = 9.3$ [33] (Table 3). The acid centers are coordinatively unsaturated

Table 3
Acidic, basic and redox properties of magnesium fluoride [33]

Amount of pyridine adsorbed ^a (μmol/m ²)	0.31
Amount of acetic acid adsorbed ^a (µmol/m ²)	5.82
Acidic strength (H_0)	3.3
Basic strength (H_{-})	9.3
Concentration of Pe ⁺ (spin/m ²)	1.0×10^{14}
Concentration of TCNE ⁻ (spin/m ²)	1.8×10^{14}

Pe⁺, perylenium cation radicals; TCNE⁻, tetracyanoethylene anion radicals.

^a The amount of pyridine and acetic acid adsorbed determined by elemental analysis using a Perkin-Elmer elemental analyzer.

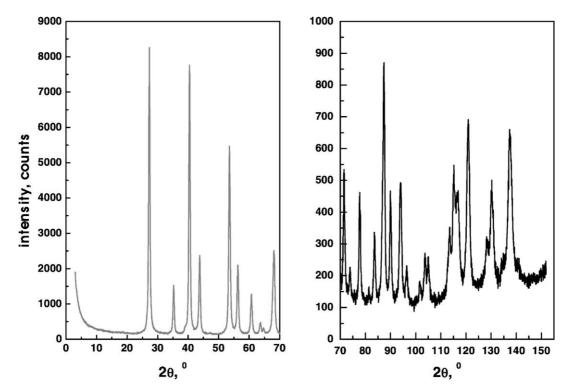


Fig. 2. XRD spectra of MgF2 calcined at 673 K.

magnesium ions or pairs of such ions making Lewis-type sites. The basic centers are certain surface hydroxyl groups or oxide and fluoride anions. The adsorption of perylene revealed that these acid centers could also play the role of

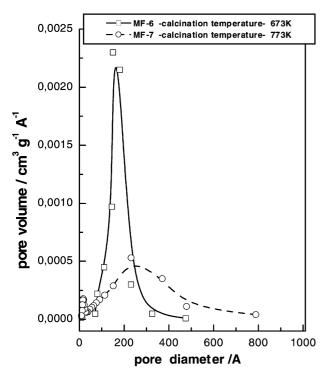


Fig. 3. The effect of calcination temperature of MgF₂ on pore distribution.

oxidizing centers for hydrocarbons with condensed rings. Similarly, the basic centers can act as reductants for compounds of high electron affinity (adsorption of tetracyanoethylene (TCNE)) [33]. It should be emphasized that the concentration of the centers on the MgF₂ surface is by one to two orders of magnitude lower than on amorphous silica-alumina or Al₂O₃. Therefore, the MgF₂ surface can be described as relatively chemically inert compared with pure silica. More detailed information on the surface structure of magnesium fluoride was provided by the infrared spectroscopy study [18]. The IR spectrum recorded after pyridine adsorption revealed a band at 1450 cm⁻¹, characteristic of Lewis acidic centers. The IR spectrum did not show the band characteristic of the pyridinium ion ~1535 cm⁻¹, which indicated the absence of Brønsted acid centers.

The results discussed above show that magnesium fluoride is characterized by an almost chemically inert surface, which suggested its use as a support rather than a catalyst. It shows good thermal stability, relatively high hardness and high resistance to calcination in oxygen. MgF₂ has a relatively large surface area of 45 m²/g after calcination at 673 K, and a narrow range of pore size in the scale of mesopores thus being an almost model support of mesoporous structure.

3. Magnesium fluoride as a support

Research work on the catalysts supported on MgF_2 has developed in three main directions.

- Study of the structure and surface properties of the catalysts with:
 - (a) metal oxides (Mo, V, W, Cu, Cr);
 - (b) binary metal oxide phases (Cu-Cr, Cu-Mn);
 - (c) metallic catalysts (Ru).
- 2. Studies of the heteropolyacids supported on MgF₂.
- 3. Catalysts for environmentally friendly processes.

3.1. Metal oxides

Transition metal oxides—Cr, V, Mo, W, Nb, Cu, Co and Re dispersed on the surface of supports such as Al_2O_3 , SiO_2 , TiO₂, ZrO₂ and MgO [34-42] have become a subject of interest in recent years. One of the main difficulties in identification of surface complexes occurring in these systems was that oxide ions of the transition metal-oxygen polyhedra formed under thermal treatment of catalysts were indistinguishable from those of the oxidic support. Wojciechowska and co-workers attempted to resolve this problem using systems with transition metal oxide deposited on magnesium fluoride [43–51]. This attempt revealed that deposition of transition metal ions on the surface of MgF₂ proceeded via simple adsorption [46]. Apparently, the OH groups on the surface of MgF2 crystallites did not have enough basic or acidic character to react with a precursor of the active phase and thus they remain unchanged after deposition of the active phase. As a result of MgF₂ impregnation with the precursors of active phases, the transition metals are adsorbed as oxo-ions $MO_x(M = Mo, V, W, Cu, Cr)$. Deposition of MO_x is structure-sensitive and takes place as a result of adsorption only on the crystal planes (110) of the rutile structure of MgF₂ where only (Mg_{uns})²⁺ are present. On the other crystal faces, e.g. (001), (100) and (0 1 0) where both coordinatively unsaturated magnesium and fluorine ions are present, heterolytic dissociation of water takes place [46]. The cleavage plane on which only (Mg_{uns})²⁺ ions are present and along which the smallest number of bonds must be disrupted is the (1 1 0) plane [45]. Two F ions are missing in the coordination spheres of unsaturated Mg²⁺ ions in every second row, whereas F⁻ ions are fully saturated. On the plane (1 1 0), the adsorption of an oxo-anion can take place, with two oxygen atoms of these ions completing the coordination spheres of unsaturated Mg²⁺ ions (Fig. 4). On outgassing at higher temperatures, the polyanions decompose and the MO₆ octahedra or MO₄ tetrahedra spread over the (1 1 0) plane due to wetting, their oxygen atoms occupying the vacant sites of further surface of $(Mg_{cus})^{2+}$ ions. These ions generate the Lewis acidic sites when anion vacancies are formed. Whereas the Lewis acidic sites exposed to water vapor become hydroxylated giving Brønsted acidic sites.

Apart from MO_x ions, surface complex formation may involve fluorine anions from the support lattice. The formation of such complexes in the systems V₂O₅/MgF₂ and CuO/MgF₂ was described in [44,46], while for the other catalysts (Cr, Mo, W) no formation of fluoride compounds was observed. Fluorine compounds are formed as a result adsorption of VO³⁺ species of the surface of MgF₂. On preparation, at pH = 4, the ions are at equilibrium with H₂VO₄ and H₃VO₄ (according to the pH diagram [52]). The VO₂⁺ becomes hydrated to form VO(OH)₂, which in the presence of protons at the surface of MgF₂ may be stripped of the hydroxyl groups to give VO³⁺ species. These cations adsorb at the sites with excess negative charge. Such sites exist at the (2 1 0) crystal planes, where five fluoride ions surround a square pyramidal vacancy. This vacancy shows the total charge of -3 units and can easily adsorb the (V=O)³⁺ cation forming the VOF₅ octahedron (the total

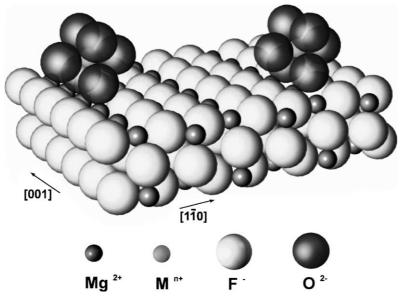


Fig. 4. The MO_x groups located on MgF₂ (1 1 0) crystal plane.

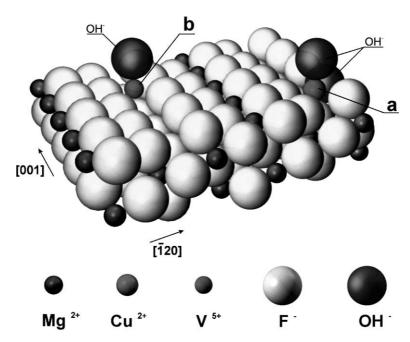


Fig. 5. Surface complexes of CuF₄(OH)₂ (a) and VF₅OH (b) at the (2 1 0) crystal plane of MgF₂.

charge of fluoride ions is -3 as the other two negative charge units are used to neutralize the charge of Mg^{2+} from the fluorine lattice) (Fig. 5). The presence of such species at the surface of MgF_2 at low coverage was detected by electron paramagnetic resonance (EPR) and IR methods [46]. Similarly, the presence of fluoride complexes on the surface of CuO/MgF_2 samples can be explained by the interaction of a copper precursor with the surface of the support. As a result, copper fluoride species of a structure similar to that of $CuF_2 \cdot 2H_2O$ are formed, where four fluoride ions and two water molecules (or OH groups) surround the Cu^{2+} ion. Such sites exist in the (2 1 0) crystal plane (Fig. 5).

Deposition of MO_x and MOF_x species in contact with water vapor leads to formation of the complexes $MO_{r-1}OH$ and $MOF_{x-1}OH$. Their formation is evident from the appearance of many new bands in the IR spectrum assigned to OH groups bonded to these complexes [45]. The OH groups of WO₃/MgF₂ catalysts have the highest, while V₂O₅/MgF₂ the lowest acid strength, which is reflected in the catalytic properties. For example, 100% selectivity to propene was observed in the reaction of 2-propanol decomposition for WO₃/MgF₂ catalysts, whereas V₂O₅/MgF₂ and Cr₂O₃/MgF₂ showed very small selectivity towards dehydration [45]. A similar situation was observed in cumene cracking involving strong acidic centers in which WO₃/MgF₂ catalysts showed the highest activity. In the same reaction MoO₃/MgF₂ catalysts were less active and V₂O₅/MgF₂, Cr₂O₃/MgF₂, CuO/MgF₂ were completely inactive. In the dehydrogenation of cyclohexane the order of activity was [45]:

$$\begin{split} Cr_2O_3/MgF_2 &> V_2O_5/MgF_2 > MoO_3/MgF_2 \\ &> WO_3/MgF_2 > CuO/MgF_2. \end{split}$$

Catalytic activity is proportional to the MgF_2 surface coverage with MO_x or MOF_x , which can indicate that molecularly dispersed surface species are the active sites.

3.2. Two different oxide phases

The solution of the mechanism of the monolayer oxide species bonding with the surface of MgF2 has prompted a study of the structure and physico-chemical properties of more complex systems containing two different oxide phases. The results of X-ray photoelectron spectroscopy (XPS), IR, EPR, X-ray diffraction (XRD) and chemical analysis have indicated the interaction between the oxocopper, oxo-chromium ions and surface ions of MgF₂ taking place on the surface of the catalysts containing both copper and chromium oxides deposited on MgF₂ [53,54]. As a result, the oxo-ions adsorbed on the coordinatively unsaturated Mg²⁺ ions and Cu²⁺ ions interact with the surface F⁻ ions forming oxide and oxofluoro-oxide Cu²⁺ complexes. The interaction between copper and chromium ions led to an electron transfer from chromium to copper. As a consequence Cr⁶⁺ and Cu⁺ centers were formed, which played the role of active sites in catalytic dehydrogenation reactions [53,54]. The surface was covered by highly dispersed copper chromate and Cr₂O₃ crystallites. It contains a considerable number of Cr⁶⁺ ions, stabilized by the presence of copper ions in the copper chromate matrix. Because of the presence of Cr₂O₃, the surface contains also Cr³⁺ ions, which are resistant to oxidation in the course of pretreatment. In the processes of decomposition of 2-propanol and dehydrogenation of cumene, the systems containing both copper and chromium oxides deposited on the surface of the MgF₂ support showed the catalytic activity one order of magnitude higher than that of the preparations containing single oxides only.

The structure and catalytic activity of the catalysts containing copper and manganese oxides supported on MgF₂ [55] have been also studied. Using XRD and temperature-programmed reduction (TPR) techniques it has been established that copper and manganese oxides as well as spinel structure CuMn_2O_4 are present on their surface. The introduction of the oxides onto the support resulted in an increase of its redox centers and Lewis acid centers. The double oxide system Cu-Mn-O/MgF_2 was found more effective in CO oxidation and NO reduction by propene than catalysts based on individual oxides.

3.3. Metallic phase

The interaction between metal and support may lead to changes in the surface structure and catalytic properties of the metallic catalysts. The interaction is possible because of a modification of the metal electronic structure by shift in electron density towards the support. We have chosen ruthenium for our study because of its high activity in many reactions, which distinguishes it among metals of group 8. Literature provides the information on ruthenium deposited on various supports, i.e. SiO₂ [56], Al₂O₃ [57], TiO₂ [58] and active carbon [59]. Wojciechowska et al. were the first to obtain ruthenium catalysts supported on MgF₂. The catalysts were synthesized from two different precursors of ruthenium RuCl₃ or Ru₃(CO)₁₂. The effect of the precursor on the structure and catalytic properties of the Ru/ MgF₂ system was reported in [60]. The EPR study of ruthenium catalysts after adsorption of probe molecules (CO and O₂) indicated the presence of ruthenium centers able to transfer an electron. The samples obtained from Ru₃(CO)₁₂ were characterized by a considerably greater ability to undergo electron transfer than the samples obtained from RuCl₃. On the surface of the former, there were Ru⁰ as well as the Ru^{σ +} species endowed with charge between 0 and 1. Both series of preparations were active in redox or acid-base reactions. The activities of the carbonyl samples were higher than those of the chloride catalysts, particularly in the reactions requiring the presence of acid centers.

The effect of the chlorine precursor of ruthenium on the metal dispersion on the surface of Ru/MgF₂-type catalysts has been studied. Results of the dispersion measurements performed by the static method of hydrogen chemisorption have shown that the dispersion decreases with ruthenium loading, similarly as for the majority of the known metallic catalysts. The mean size of the crystallites obtained from the transmission electron microscopy (TEM) study proved much smaller than that implied by the chemisorption measurements. This difference was explained by a strong metal–support interaction (SMSI) or the decrease of the chemisorption by the chlorine or fluorine ions of the support left in the catalyst [61].

3.4. Heteropolyacids

Polyoxometalates of the formula $H_mXY_{12}O_{40}$, where X = P, Ni, As, Te, Mn, Si; and Y = Mo, W, V are known as heteropolyacids (HPA). Their structure is well recognized and thus they can be modified in a controlled way, which permits a regulation of their acid-base and redox properties. Therefore, they have found application in many interesting catalytic reactions. Heteropolyacids can be used as catalysts for homogeneous as well as heterogeneous chemical processes. In the latter, they are supported an porous materials, usually SiO₂ [62], polymeric matrices [63,64], on mesoporous materials [65] or on MgF₂ [66]. Mastikhin et al. [66] studied heteropolyacid H₃PW₁₂O₄₀ supported on MgF₂, and reported changes in the structure of HPA due to the interaction with the support, using ¹H, ³¹P nuclear magnetic resonance spectroscopy-magic angle spinning (NMR-MAS) and IR spectroscopic methods. The results revealed formation of several different surface species upon supporting of HPA on MgF₂ surface. At small H₃PW₁₂O₄₀ content $(\sim 1-3 \text{ wt.}\%)$, HPA interacts strongly with the specific surface centers including surface F atoms, which results in destruction of HPA anions. At intermediate HPA contents (5-20 wt.%) the isolated monomeric HPA molecules loosely bonded with the support surface are also presented in the catalyst. At still greater HPA contents, the crystals of HPA are formed. Different types of surface species exhibit different catalytic properties.

The evidence reported in [66] permits drawing a conclusion that MgF₂ is a suitable support to study the interactions of heteropolyacids with the support surface. It should be emphasized that MgF₂ is transparent for infrared radiation in the range $4000-600~{\rm cm}^{-1}$ and in contrast to other supports (SiO₂, Al₂O₃, TiO₂), it does not show bands in the range of frequencies characteristic of HPA, i.e. in the range $\sim 1400-600~{\rm cm}^{-1}$ (Fig. 6).

3.5. Catalysts for environmentally friendly processes

The information on the way of formation of oxide layers, dioxide layers or metallic layers on the surface of MgF₂ and determination of the physico-chemical properties of the systems prompted the search for catalysts of prospective interest in the environment protection.

The process in which the catalysts with a metallic phase supported on MgF₂ were used was hydrodechlorination of CFCs. It is known that chlorofluorocarbons used as coolants and aerosol propellants are responsible for depletion of the stratospheric ozone layer. Replacement of chlorine atoms in such compounds with hydrogen atoms is one of the methods aiming at restricting this effect and hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) have attracted much attention as the alternatives of CFCs. The production of HFCs and HCFCs involves catalytic processes, namely fluorination of chloroalkanes over AlF₃ or Cr₂O₃ as catalysts, and hydrodechlorination of CFCs over

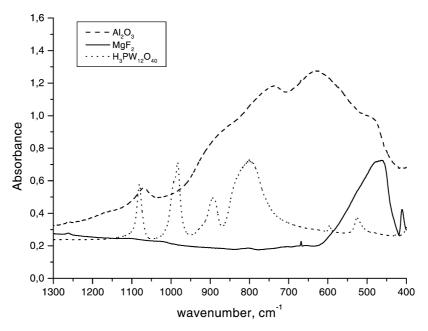


Fig. 6. IR spectra of Al₂O₃, MgF₂ and H₃PW₁₂O₄₀.

metal catalysts. In the last process, the most often used are heterogeneous catalysts containing such transition metals as iridium, ruthenium [23] and especially palladium [7,22] supported on active carbon, Al₂O₃, TiO₂, ZrO₂, MgO [23] and on several metal fluorides AlF₃, ZrF₄, TiF₃ [6,7]. The selectivity of the reaction is highly dependent on the nature of the support. For example, using the Pd catalysts supported on ZrF4 in CF2Cl2 hydrogenation allows reaching a selectivity to CH₂F₂ of up to 90% [6], whereas on graphite the CH₂F₂ selectivity was 56% [7]. The oxide supports are not resistant to the highly corrosive conditions of this reaction which results from considerable evolution of HCl, which can transform the support, for example, MgO into MgCl₂. Similarly due to the inevitable formation of HF during CFCs hydrodehalogenation, MgO is transformed into MgF₂, which, when located at the metal-support interface, might favorably modify the electronic state of the metal particles. The use of fluorides as supports prevents this process and yields systems resistant to the reaction environment. For instance, Pd and Ru catalysts supported on MgF₂ appeared to be useful catalysts in the reaction of CCl₂F₂ hydrodechlorination [22,23]. Their selectivity towards CH₂F₂ production was reasonably high (>70%), resembling the catalytic behavior of AlF₃-supported palladium catalysts. After doping Pd/MgF₂ with gold, the selectivity for CH₂F₂ increased from \sim 70 to almost 90%. Generally, the use of metal fluorides as supports favors both the selectivity to CH₂F₂ and the specific activities per surface metal atoms.

The systems tested for the heterogeneous dismutation of CCl_2F_2 were $AlF_{3-x}(OH)_x$ [15] and α - $CrF_{3-x}(OH)_x$ [16] doped by magnesium fluoride. The introduction of MgF_2 to AlF_3 in the amount of up to 10 mol% of Mg resulted in a considerable increase in the CCl_2F_2 conversion, up to 90% [15] (Fig. 7). Consequently, the catalytic activity was

diminished with increasing Mg content. The situation was different for the system CrF_3 -MgF₂ whose activity increased with increasing MgF₂ and above 56% Mg it remained on the level of \sim 60% [16] (Fig. 8). The authors of these works have

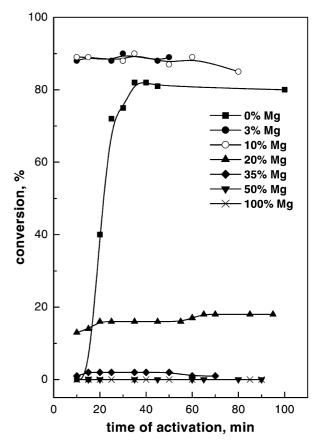


Fig. 7. Conversion of CCl_2F_2 vs. activation time for various Mg-replaced α -AlF₃·3H₂O calcination products [15].

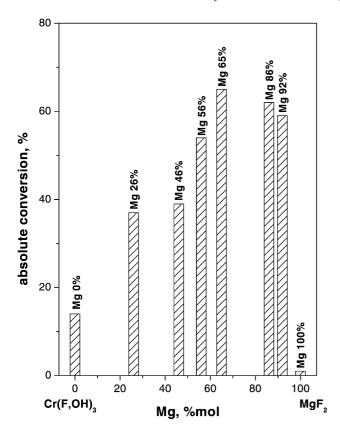


Fig. 8. Conversion of CCl_2F_2 vs. Mg content for various Mg-replaced α -CrF₃·3H₂O calcination products [16].

explained the increasing catalytic activity by the generation of new Lewis acid centers or enhancement of the earlier existing centers. A comparison of the performance of these two systems has shown that the AlF₃ doped with magnesium fluoride in the amounts as small as 3–10% results in a drastic increase in the CFCs conversion. When applying CrF₃, a 60% conversion was obtained only after introduction of Mg in over 56%. Taking into regard the results of [13] reporting the properties of a mixed system CrF₃/MgF₂-AlF₃, it is supposed that the decrease in the activity of AlF₃/MgF₂ [15], containing magnesium fluoride in the content of above 10% Mg, is related to the anti-synergy effect attributed to the formation of MgAlF₅.

The effect of magnesium fluoride in chromium-magnesium catalysts on the fluorination reaction of CF₃CH₂Cl has also been studied by Lee et al. [13]. They concluded that MgF₂ plays an important role in extending the lifetime of the chromium catalysts, by suppressing the formation of undesired side products. In addition, MgF₂ enhances the activity and selectivity of the chromium catalysts through the electronic interaction with CrF₃. Lee et al. [14] have shown that the active centers in chromium-magnesium fluoride catalysts are coordinatively unsaturated chromium species. This species are easily hydrated and deactivated by coke formation.

Another process in which the catalysts with a metallic phase supported on MgF₂ were used was hydrodesulfurization (HDS). Analysis of literature data prompted us to try and

use RuS₂ as the active component for a catalysts of HDS process. Ruthenium sulfide catalyst was found to be the most active hydrodesulfurization catalyst among the transition metal sulfides and exhibited very high activity [67]. The properties of the RuS₂ catalyst were found to be to a significant degree modified by the support used [68–70]. The modification is a consequence of the interaction between the metallic phase and the support, leading to a modification of the electronic state of the metal as a result of charge transfer between the metal and the support. The outcome of our further studies [21,71] were the catalysts RuS_x/MgF₂ characterized by very high activity in hydrodesulfurization of thiophene. Their activity was 20 times higher (expressed per active phase) than that of the commercially available cobalt-molybdenum catalyst (Fig. 9).

Magnesium fluoride has also been found useful as a support in interesting oxide catalysts showing high activity and selectivity in NO_x reduction to N_2 in the presence of carbon oxide [19,72] and hydrocarbons [20]. Our earlier studies on reduction of nitrogen oxides with carbon monoxide on different oxides of transition metals supported on MgF_2 proved the best performance of CuO/MgF_2 catalysts. The results helped resolve the mechanism of this reaction and establish the reasons for the catalyst deactivation [72,73]. However, despite very high initial activity they undergo a rather fast deactivation with time-on-stream. Addition of dioxygen to the reaction gases significantly prolongs the lifetime of the catalysts. In the process of NO reduction also propene was used as a reducing agent.

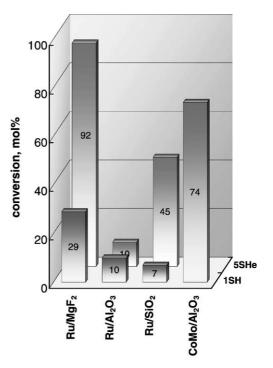


Fig. 9. Thiophene hydrodesulfurization on Ru/MgF $_2$, Ru/Al $_2$ O $_3$, Ru/SiO $_2$ and commercial CoMo/Al $_2$ O $_3$ catalysts after activation in 10% H $_2$ S/H $_2$ (1SH) and 50% H $_2$ S/He (5SHe).



Fig. 10. Catalytic activity of various metal oxides supported on magnesium fluoride in the $NO+C_3H_6+O_2$ reaction at 643 K.

Fig. 10 presents the activities of single oxides (MnO_x/MgF₂, CuO/MgF₂, MoO₃/MgF₂) and double oxide systems (MnO_x-CuO/MgF₂ and MoO₃-CuO/MgF₂) in the reaction:

$$4NO + 2C_3H_6 + 7O_2 \rightarrow 2N_2 + 6CO_2 + 6H_2O$$
.

An exceptionally active and stable catalyst proved to be MnO_x-CuO/MgF₂ in the presence of dioxygen [74]. The other catalysts activities were lower and decreased with time.

4. Summary

- Magnesium fluoride satisfies the criteria of a good catalyst support and can be successfully used in catalytic processes.
- 2. The absence of oxygen atoms in the crystalline lattice of MgF₂ makes it possible to analyze the structure of oxide phases (transition metal oxides, heteropolyacids) supported on magnesium fluoride in particular by IR spectroscopy, because MgF₂ does not have characteristic bands in the range $\sim 1300-600$ cm⁻¹.
- 3. MgF₂ support is resistant in hydrodechlorination of CFCs. The use of metal fluorides as supports allows better control of the selectivity of this process.
- 4. The use of fluorides of different metals as the active phase supports has permitted obtaining catalysts active

in the processes important from the point of view of the natural environment protection, such as hydrodechlorination of CFCs (AlF₃, CrF₃, AlF₃-MgF₂, Pd/MgF₂), hydrodesulfurization of organic compounds (Ru/MgF₂), elimination of nitrogen oxides and CO oxidation (CuO-MnO_x/MgF₂).

Acknowledgements

We acknowledge support from the Polish Committee for Science Research (grant 7T09A001/20).

References

- L.M. Rodriguez, J. Alcaraz, M. Hernandez, M. Dufaux, Y. Ben Taârit, M. Vrinat, Appl. Catal. A 189 (1999) 53.
- [2] D. Bechadergue, M. Blanchard, P. Canesson, in: M. Guisnet, et al. (Eds.), Heterogeneous Catalysis and Fine Chemicals, Elsevier, Amsterdam, 1988, p. 257.
- [3] M. Wechsberg, G.H. Cady, J. Am. Chem. Soc. 91 (1969) 4432.
- [4] R.C. Kennedy, G.H. Cady, J. Fluorine Chem. 3 (1973) 41.
- [5] A. Bendada, D.S. Boyle, L. McGhee, G. Webb, J.M. Winfield, J. Fluorine Chem. 71 (1995) 175.
- [6] B. Coq, J.M. Cognion, F. Figueras, D. Tournigant, J. Catal. 141 (1993) 21.
- [7] B. Coq, F. Figueras, S. Hub, D. Tournigant, J. Phys. Chem. 99 (1995) 11159.
- [8] A. Hess, E. Kemnitz, A. Lippitz, W.E.S. Unger, D.H. Menz, J. Catal. 148 (1994) 270.
- [9] A. Hess, E. Kemnitz, J. Catal. 149 (1994) 449.
- [10] E. DeCanio, J.W. Bruno, V.P. Nero, J.C. Edwards, J. Catal. 140 (1993) 84.
- [11] M. Haag, H. Dabringhaus, J. Crystal Growth 178 (1997) 287.
- [12] H. Kim, H.S. Kim, B.G. Lee, H. Lee, S. Kim, J. Chem. Soc., Chem. Commun. (1995) 2383.
- [13] H. Lee, H.S. Kim, H. Kim, W.S. Jeong, I. Seo, J. Mol. Catal. A: Chem. 136 (1998) 85.
- [14] H. Lee, H.D. Jeong, Y.S. Chung, H.G. Lee, M.J. Chung, S. Kim, H.S. Kim, J. Catal. 169 (1997) 307.
- [15] E. Kemnitz, A. Hess, G. Rother, S. Troyanov, J. Catal. 159 (1996) 332.
- [16] B. Adamczyk, A. Hess, E. Kemnitz, J. Mater. Chem. 6 (10) (1996) 1731.
- [17] M. Wojciechowska, K. Nowińska, W. Kania, A. Nowacka, React. Kinet. Catal. Lett. 2 (1975) 229.
- [18] M. Wojciechowska, Bull. Acc. Pol.: Chim. 29 (1981) 533.
- [19] M. Wojciechowska, J. Haber, S. Łomnicki, Arch. Environ. Prot. 23 (1997) 7.
- [20] M. Wojciechowska, M. Zieliński, S. Łomnicki, in: Proceedings of the Third International Conference on Catalysis and Adsorption in Fuels Processing and Environmental Protection, Oficyna Wydawnicza Politechniki Wrocławskiej, Kudowa, September 1999, p. 249.
- [21] M. Wojciechowska, M. Pietrowski, S. Łomnicki, J. Chem. Soc., Chem. Commun. (1999) 463.
- [22] A. Malinowski, W. Juszczyk, J. Pielaszek, M. Bonarowska, M. Wojciechowska, Z. Karpiński, Stud. Surf. Sci. Catal. 130 (2000) 1991.
- [23] A. Malinowski, W. Juszczyk, J. Pielaszek, M. Bonarowska, M. Wojciechowska, Z. Karpiński, J. Chem. Soc., Chem. Commun. (1999) 685.
- [24] L.E. Manzer, Catal. Today 13 (1992) 13.

- [25] W.H. Baur, A.A. Khan, Acta Crystallogr. B 27 (1971) 2133.
- [26] G. Vidal-Valat, Acta Crystallogr. B 35 (1979) 1590.
- [27] H. Knözinger, P. Ratnasamy, Catal. Rev. Sci. Eng. 17 (1978) 31.
- [28] M. Wojciechowska, B. Czajka, M. Pietrowski, M. Zieliński, Catal. Lett. 66 (2000) 147.
- [29] B.C. Gates, Catalytic Chemistry, Wiley, New York, 1992, 325 pp.
- [30] NBS Circular 539, vol. IV, 1955, 33 pp.
- [31] S. Fujihara, M. Tada, T. Kimura, Thin Solid Films 304 (1997) 252.
- [32] M.E. Thomas, S.K. Anderson, T.M. Cotter, K.T. Constantikes, Infrared Phys. Technol. 39 (1998) 213.
- [33] M. Wojciechowska, R. Fiedorow, J. Fluorine Chem. 15 (1980) 443.
- [34] I.E. Wachs, G. Deo, D.S. Kim, M.A. Vuurman, H. Hu, Studies in Surface Science and Catalysis, vol. 75, Elsevier, Amsterdam, 1993, 543 pp.
- [35] G. Centi, M.L. Granadoz, D. Pinelli, F. Trifiro, Surface Science and Catalysis, vol. 67, Elsevier, Amsterdam, 1991, p. 1.
- [36] G.C. Bond, S. Flamerz, R. Shukri, Faraday Discuss. Chem. Soc. 87 (1989) 87.
- [37] J. Haber, in: J.A. Thomas, K.I. Zamarayew (Eds.), Perspectives in Catalysis, Blackwell Scientific Publications, Oxford, 1992, p. 371.
- [38] N.C. Ramani, D.L. Sullivan, J.G. Ekerdt, J. Jehng, I.E. Wachs, J. Catal. 176 (1998) 143.
- [39] L.A. Boot, M.H.J.V. Kerkhoffs, B.Th. van der Linden, A.J. van Dillen, J.W. Geus, F.R. van Buren, Appl. Catal. A 137 (1996) 69.
- [40] I. Wachs, in: M.J. Philips, M. Ternan (Eds.), Proceedings of the Ninth International Congress on Catalysis, vol. 3, Calgary, 1988, p. 1449.
- [41] J. Haber, R. Kozłowski, A. Kozłowska, in: M.J. Philips, M. Ternan (Eds.), Proceedings of the Ninth International Congress on Catalysis, vol. 4, Calgary, 1988, p. 1481.
- [42] B. Xu, L. Dong, Y. Chen, J. Chem. Soc., Faraday Trans. 94 (1998) 1905
- [43] J. Haber, M. Wojciechowska, J. Catal. 110 (1988) 23.
- [44] M. Wojciechowska, J. Goslar, W. Kania, M. Pietrowski, J. Fluorine Chem. 91 (1998) 141.
- [45] J. Haber, M. Wojciechowska, in: Y. Izumi, H. Arai, M. Iwamoto (Eds.), Science and Technology in Catalysis 1994, Elsevier/ Kodansha, Amsterdam/Tokyo, 1995, Stud. Surf. Sci. Catal. 92 (1995) 87.
- [46] J. Haber, J. Stoch, M. Wojciechowska, Surf. Interface Anal. 15 (1990) 711.
- [47] M. Wojciechowska, W. Gut, M. Grunwald-Wyspiańska, Catal. Lett. 15 (1992) 237
- [48] M. Wojciechowska, J. Goslar, W. Gut, Z. Phys. Chem. 176 (1992) 211.
- [49] M. Wojciechowska, S. Łomnicki, J. Goslar, Z. Phys. Chem. 189 (1995) 113.

- [50] M. Wojciechowska, S. Łomnicki, Catal. Lett. 33 (1995) 217.
- [51] M. Wojciechowska, S. Łomnicki, M. Pietrowski, J. Fluorine Chem. 76 (1996) 133.
- [52] M.T. Pope, Heteropoly, Isopoly Oxometalates, Springer-Verlag, Berlin, 1983.
- [53] M. Wojciechowska, S. Łomnicki, J. Bartoszewicz, J. Goslar, J. Chem. Soc., Faraday Trans. 91 (1995) 2207.
- [54] M. Wojciechowska, J. Haber, S. Łomnicki, J. Stoch, J. Mol. Catal. 141 (1999) 155.
- [55] M. Wojciechowska, A. Malczewska, B. Czajka, M. Zieliński, J. Goslar, Appl. Catal. A 237 (2002) 63.
- [56] T. Lopez, P. Bosch, M. Asomoza, R. Gomez, J. Catal. 133 (1992) 247.
- [57] J.A. Mieth, J.A. Schwartz, J. Catal. 118 (1989) 203.
- [58] N.M. Gupta, V.S. Kamble, R.M. Iyer, K.R. Thampi, M. Grätzel, J. Catal. 137 (1992) 473.
- [59] C. Moreno-Castilla, M.A. Salas-Peregrin, F.J. López-Garzón, J. Mol. Catal. 95 (1995) 223.
- [60] M. Wojciechowska, M. Pietrowski, S. Łomnicki, B. Czajka, Catal. Lett. 46 (1997) 63.
- [61] M. Pietrowski, M. Wojciechowska, in: Proceedings of the Fourth International Conference on Catalysis and Adsorption in Fuels Processing and Environmental Protection, Oficyna Wydawnicza Politechniki Wrocławskiej, Kudowa, 2002, p. 367.
- [62] K. Nowińska, R. Fiedorow, J. Adamiec, J. Chem. Soc., Faraday Trans. 87 (1991) 749.
- [63] W. Turek, E. Stochmal-Pomarzańska, A. Proń, J. Haber, J. Catal. 189 (2000) 297.
- [64] E. Stochmal-Pomarzańska, M. Hasik, W. Turek, A. Proń, J. Mol. Catal. 114 (1996) 267.
- [65] W. Kaleta, K. Nowińska, J. Chem. Soc., Chem. Commun. (2001) 535
- [66] V.M. Mastikhin, V.V. Terskikh, M.N. Timofeeva, O.P. Krivoruchko, J. Mol. Catal. A: Chem. 95 (1995) 135.
- [67] T.A. Pecoraro, R.R. Chianelli, J. Catal. 67 (1981) 430.
- [68] M. Nagai, K. Koizumi, S. Omi, Catal. Today 35 (1997) 393.
- [69] Y.J. Kuo, B.J. Tatarchuk, J. Catal. 112 (1988) 229.
- [70] M.J. Ledoux, O. Michaux, G. Agostini, J. Catal. 102 (1986) 275.
- [71] M. Wojciechowska, M. Pietrowski, B. Czajka, Catal. Today 65 (2001) 349.
- [72] M. Wojciechowska, S. Łomnicki, M. Derewiński, J. Haber, J. Kryściak, Pol. J. Environ. Stud. 6 (1997) 75.
- [73] M. Wojciechowska, S. Łomnicki, Clean Prod. Process. 1 (1999) 237.
- [74] M. Wojciechowska, M. Zieliński, A. Malczewska, Pol. J. Environ. Stud. 10 (Suppl. II) (2001) 28.